
Signaturgruppen SPS client PHP

Signaturgruppen A/S www.signaturgruppen.dk
Incuba-Navitas Inge Lehmanns Gade 10 8000 Århus C info@signaturgruppen.dk

Page 1

1 Introduction
This document is a technical introduction to the Signaturgruppen SPS PHP client library.

For the rest of this document the SPS PHP client will be referred to as "the client".

2 Requirements
PHP version 5.6 or greater and basic knowledge of the Composer tool : https://getcomposer.org/.

3 Configuration
The client is configured through a .json snippet which determines the certificates, client-ID and endpoint of the
SPS services backend.

In the demo this is already preconfigured for our test setup out-of-the-box.

3.1 Load configuration
The configuration is loaded through

using Signaturgruppen\SPS\Configuration\Config;
Config::setDefaultConfigJson(config);

The config parameter is the JSON configuration snippet used in the setup. Note that this snippet is preconfig-
uret for the testenvironment, and you are not required to change this before changing environment.

3.2 NemIDConfig
The static Signaturgruppen \ SPS \ Configuration \ NemIDConfig class holds settings for configuring the NemID
client

Currently the following is supported:

Option Values Description

RememberUserId true / false Allows user to check "remember me"

3.2.1 NemIDConfig usage
Example of how to set the NemIDConfig settings, see Configuration.php in the demo.

Setting RememberUserId is done like this

NemIDConfig::$RememberUserId = true;

3.3 Configuration.php
Use the Configuration.php as an example for how the configuration could be loaded and initialized. This enables
both static and dynamic loading of the configuration.

Signaturgruppen SPS client PHP

Signaturgruppen A/S www.signaturgruppen.dk
Incuba-Navitas Inge Lehmanns Gade 10 8000 Århus C info@signaturgruppen.dk

Page 2

4 HTML 5 Web Messaging and iframes
The flow works by setting up an iframe and then communicating with the backend using the HTML 5 Web Mes-
saging JavaScript API through an iframe.

The client library generates the code needed to enable communication with the backend through an iframe. As
an example, the following code snippet creates the signed parameters for the backend as well as the JavaScript
needed for the communication

$nemid = new \Signaturgruppen\SPS\Frame\NemIDFrameBuilder();
echo $nemid­>buildScript("receive.php");

<iframe src="<?php echo $nemid­>getFrameUrl() ?>" scrolling="no"
style="position:relative; width: 200px; height: 250px; border: none; margin: 0; padding: 0;"></iframe>

The argument for the buildScript function, is the postback-url, to which the response from the backend is posted
when the client flow is completed or fails inside the iframe.

The ifrane is setup in the wanted size, minimum 200x250px, and using the src as showed in the demo.

The response is handled at "receive.php" by using our client:

\Signaturgruppen\SPS\Demo\Configuration::loadConfig();
$postResult = $_POST["result"];

$validator = new \Frame\NemIDFlowValidator();
try{
 $flowResult = $validator­>validate($postResult);
 echo "<pre>" . json_encode($flowResult, JSON_PRETTY_PRINT) . "</pre>";
}catch (\Signaturgruppen\SPS\Frame\ValidationException $exeption){
 echo "Error: " .$exeption­>errorMessage .
 ", Status: " . $exeption­>status .
 ", User message (if set): " . $exeption­>userMessage;
}

The $flowResult- > AuthenticationInfo object contains the successful NemID authentication info like PID, RID,
certificate subject, the signed XMLDSig etc.

The validation function throws an exception if the result is not as expected or if the result does not successfully
validate as a valid and expected NemID response. If a result object is returned, the user can be logged in or the
document has been signed successfully.

4.1 CPR Services
The client library supports the CPR services available through the NemID infrastructure. If you are a private ser-
vice provider you are restricted to the CPR Match service, which lets you validate a given CPR paired with the
Personal ID (PID) from a successfull NemID authentication flow.

4.1.1 CPR (non-private service providers)
If you have a CPR agreement with DanID it is a simple configuration setting at the backend which enables the
CPR service and sets the CPR in the response from the backend and makes it available through

FlowResult­>AuthenticationInfo­>Cpr.

The CPR is encrypted and decrypted transparently using RSA-SHA256.

Signaturgruppen SPS client PHP

Signaturgruppen A/S www.signaturgruppen.dk
Incuba-Navitas Inge Lehmanns Gade 10 8000 Århus C info@signaturgruppen.dk

Page 3

4.1.2 CPR Match (private service providers)
The CPR Match service is available at the backend as a RESTful service available transparently through the
client library. A CPR Match agreement with DanID is required.

The CPR service is called using the following:

$cprService = new \Signaturgruppen\SPS\Services\PidMatchService();
$cprMatched = $cprService­>pidMatchesCpr($flowResult­>AuthenticationInfo­>Pid, "CPR­FROM­USER");

The pidMatchesCpr(string pid, string cpr) method returns true or false. All communication is secured by https
and signed and encrypted using RSA-SHA256.

5 Backend response error
In case of errors, a ValidationException is thrown, with the following properties:

public string errorMessage;
public string userMessage;
public string flowErrorCode;
public string status;

5.0.1 ErrorMessage
Contains an errormessage sutable for your log.

5.0.2 UserMessage
Contains a user friendly message which can be safely displayed as html-text. No dynamic html content will be
returned and in case of links, the link will always be a target=" _ blank" link.

If the UserMessage is empty, we recommend a generic error page for your users. We will try to have all errors
where meaningful error messages can be displayed for the user covered.

5.0.3 FlowErrorCode
Contains a flow specific errorcode, which when errors occur in the NemID client, contains the NemID client er-
rorcode.

6 Flow overview
To illustrate how the different parts work together, we provide a short overview of the overall flow here.

All communication are done via https and are thus encrypted.

1. The client website opens an iframe to the backend and sends the generated and signed parameters to the
backend utilizing the HTML 5 Web Messaging JavaScript API.

2. The backend validates the parameters received.
3. The requested flow/client is started and generated parameters used. The user is interacting directly with the

service inside the iframe using a secure connection.
4. As an example: The NemID client is started inside the iframe which transparently lets the user interact with

the NemID client, as-if the client was hosted directly on the client website.
5. When the user has entered his credentials the response is validated and all required logs created at the

backend.

Signaturgruppen SPS client PHP

Signaturgruppen A/S www.signaturgruppen.dk
Incuba-Navitas Inge Lehmanns Gade 10 8000 Århus C info@signaturgruppen.dk

Page 4

6. A response is created and sent to the client website through the iframe using the HTML 5 web massaging
API.

7. The response is validated using the client library, after which all required information is available through
the client library API.

8. All messages are signed and sensitive information is encrypted. Our library transparently validates and de-
/encrypts the messages.

7 Missing features
We try to keep all of our clients up-to-date with the features available through the NemID client.

If you miss a feature in the PHP client dont hesitate to contact us.

8 Contact information

Info

Mail support@signaturgruppen.dk

Phone +45 70256425

Website http://www.signaturgruppen.dk

